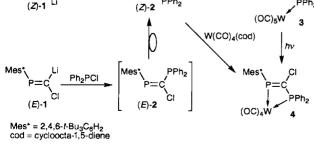
Preparation of carbonyltungsten(0) complexes of 2-chloro-3,3diphenyl-1-(2,4,6-tri-*tert*-butylphenyl)-1,3-diphosphapropene

Shigekazu Ito and Masaaki Yoshifuji*

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan. E-mail: yoshifj@mail.cc.tohoku.ac.jp

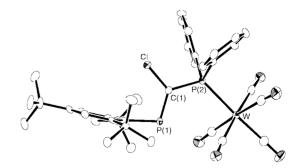

Received (in Cambridge, UK) 27th March 2001, Accepted 10th May 2001 First published as an Advance Article on the web 13th June 2001

(*Z*)-2-Chloro-3,3-diphenyl-1-(2,4,6-tri-*tert*-butylphenyl)-1,3diphosphapropene was prepared from chlorodiphenylphosphine and 1-chloro-2-(2,4,6-tri-*tert*-butylphenyl)-2-phosphaethenyllithium and used for metal complex formation as a ligand to provide carbonyltungsten(0) complexes.

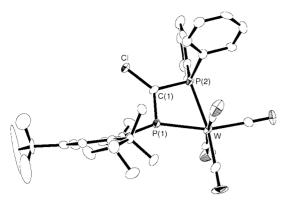
The 1,3-diphosphapropene system is an attractive ligand system for metal complex formation because two different types of phosphorus atoms are included within the system; *i.e.* a lowcoordinated $\lambda^3 \sigma^2$ -phosphorus atom^{1,2} and a common $\lambda^3 \sigma^3$ phosphorus atom. However, research on coordination of the 1,3-diphosphapropene derivatives toward transition metals has been limited, whereas several metal complexes of n³-1,3-diphosphaallyl ligands have been reported so far.^{3,4} Indeed, the only reported example concerns the X-ray structural analysis of an iron(0) complex of 1,3-diphosphapropene prepared through an intramolecular cyclization of a bulky 1,3-diphosphaallene by ourselves.⁵ There have been no reports on X-ray structural analysis of transition metal complexes of 1.3-diphosphapropene itself. Furthermore, the catalytic abilities of transition metal complexes of low-coordinated phosphorus compounds are of current interest,⁶⁻¹⁰ and thus detailed study of the coordination chemistry of the 1,3-diphosphapropene system is crucial. Here we report the preparation and X-ray structural determination of carbonyltungsten complexes of a 1,3-diphosphapropene derivative kinetically stabilized by the 2,4,6-tri-tert-butylphenyl group (Mes*) including a selective coordination reaction of either the monodentate or chelate form.

A kinetically stabilized (*Z*)-1-chloro-2-(2,4,6-tri-*tert*-butylphenyl)-2-phosphaethenyllithium (*Z*-1) was prepared from 2,2-dichloro-1-(2,4,6-tri-*tert*-butylphenyl)-1-phosphaethene and butyllithium, and was allowed to react with chlorodiphenylphosphine (Scheme 1)¹¹ to afford the corresponding 2-chloro-1,3-diphosphapropene (*Z*-2) in good yield (78%) after silica-gel column chromatographic purification (hexane–toluene, v/v = 5/1). Compound *Z*-2 was characterized spectroscopically.† In the ³¹P NMR spectrum, a peak due to the P=C phosphorus atom appeared at low field (δ_P 302.4) with a large

²J_{PP} value (277 Hz), suggesting an *E*-configuration. Similarly, starting from *E*-1 and chlorodiphenylphosphine,^{11*a*} an attempt Mest P=C Ph_2PCI Mest P=C $W(CO)_5(thf)$ Mest P=C PPh_2 PPh_2 P=C PPh_2 PPh_2


Scheme 1

www.rsc.org/chemcomm


was made to prepare *E*-2. Although NMR signals due to *E*-2 were observed in the reaction mixture (δ_P 325.1, 3.0, ${}^{2}J_{PP}$ 15 Hz), *E*-2 was isomerized to *Z*-2 after the usual work-up procedure, probably due to large repulsion between the Mes* group and the Ph₂P group.

Next we investigated the coordination property of Z-2 towards tungsten(0). Initially, Z-2 was allowed to react with an equivalent amount of $W(CO)_5(thf)$ for 6 h at room temperature to afford the corresponding pentacarbonyltungsten(0) complex 3 in 39% yield as yellow prisms after recrystallisation from hexane (Scheme 1).[‡] The coordination on tungsten seemed to occur at the Ph₂P phosphorus atom as suggested by a satellite signal due to the tungsten atom in the ³¹P NMR spectrum of **3**. The reason for this type of coordination might be explicable taking the stronger basicity of the Ph₂P group into account,¹² while Bertrand and coworkers reported an NMR study to suggest the coordination at the low-coordinated $\lambda^3 \sigma^2$ -phosphorus atom in a 1,3-diphosphapropene system.⁴ In the ¹³C NMR spectrum, the chemical shift of the P=C carbon atom is similar to that for Z-2, but the two ${}^{1}J_{PC}$ values are quite different (79 and 4 Hz) indicating low electronic interaction between the PPh₂ group and the P=C carbon atom. The structure of 3 was unambiguously determined by X-ray crystallography and Fig. 1 displays an ORTEP drawing.§ The P2-W distance is 2.540(1) Å, which is similar to that for $W(CO)_5(PPh_3)$ [2.545(1) Å].¹³ The P1–C(1) distance is 1.675(4) Å, which is a normal value for the P=C bond.¹ The P1, P2, C1, Cl, W atoms are almost coplanar and the tungsten atom is located on the same side of lone pairs of the P1 atom with a P1...W distance of 3.97 Å. Complex 3 did not react with an excess amount of W(CO)₅(thf) to afford the bis-tungsten complex, probably due to steric congestion around the P=C phosphorus atom.4

The structure of **3** indicates that Z-**2** is a good chelating ligand, and therefore we tried to prepare a chelate complex of Z-**2** by use of W(CO)₄(cod) (cod = cycloocta-1,5-diene) at room

Fig. 1 An ORTEP drawing of **3** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Bond lengths (Å) and angles (°): W–P(2) 2.540(1), C(1)–Cl 1.740(4), P(1)–C(1) 1.675(4), P(1)– $C_{ipso}(Mes^*)$ 1.840(4), C(1)–P(2) 1.829(4), P(2)– $C_{ipso}(Ph)$ 1.828(4), P(2)– $C_{ipso}(Ph)$ 1.835(4); C(1)–P(1)– $C_{ipso}(Mes^*)$ 103.1(2), W–P(2)–C(1) 119.3(1), W–P(2)– $C_{ipso}(Ph)$ 110.6(1), W–P(2)– $C_{ipso}(Ph)$ 116.5(1), C(1)–P(2)– $C_{ipso}(Ph)$ 104.6(2), C(1)–P(2)– $C_{ipso}(Ph)$ 99.8(2), $C_{ipso}(Ph)$ –P(2)– $C_{ipso}(Ph)$ 104.3(2), CI–C(1)–P(1) 124.9(2), CI–C(1)–P(2) 115.4(2), P(1)–C(1)–P(2) 119.2(2).

Fig. 2 An ORTEP drawing of **4** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Bond lengths (Å) and angles (°): W–P(1) 2.489(3), W–P(2) 2.526(3), C(1)–Cl 1.73(1), P(1)–C(1) 1.651(10), P(1)–C_{*ipso*}(Mes*) 1.82(1), C(1)–P(2) 1.82(1), P(2)–C_{*ipso*}(Ph) 1.83(1), P(2)–C_{*ipso*}(Ph') 1.81(1), C(1)–P(1)–C_{*ipso*}(Mes*) 108.6(5), P(1)–W–P(2) 65.1(1), W–P(2)–C(1) 93.5(3), W–P(1)–C(1) 99.4(4), W–P(1)–C_{*ipso*}(Mes*) 152.0(3), W–P(2)–C_{*ipso*}(Ph) 115.6(4), W–P(2)–C_{*ipso*}(Ph') 127.6(4), C(1)–P(2)–C_{*ipso*}(Ph') 103.9(5), C1–C(1)–P(2)–C_{*ipso*}(Ph') 104.5(5), C_{*ipso*}(Ph)–P(2)–C_{*ipso*}(Ph') 103.9(5), C1–C(1)–P(1) 131.2(6), C1–C(1)–P2 126.8(6), P(1)–C(1)–P(2) 101.8(5).

temperature. After 12 h, 4 was obtained in 19% yield as red crystals together with 63% recovery of Z-2, after purification by gel permeation chromatographic separation (Scheme 1).[‡] A trace amount of 4 was also obtained by the reaction of Z-2 and W(CO)₅(thf). In the ³¹P NMR spectrum of **4**, a peak due to the P=C phosphorus atom is observed at a higher field than that for *Z*-2, and both of the two phosphorus atoms show satellite peaks due to the presence of the tungsten atom. Moreover, the coupling constant between the P=C phosphorus and the tungsten (213 Hz) is reasonable for a complex with an end-on coordinating mode.¹⁴ On the other hand, Appel and coworkers reported a side-on coordination with Fe(0) on the P=C moiety in the 1,3-diphosphapropene system.³ In the ¹³C NMR spectrum of 4, a peak due to the P=C carbon atom has a higher chemical shift than that for Z-2, and the two ${}^{1}J_{PC}$ values are small (23 and 9 Hz). Two different chemical shifts were observed for CO_{eq} carbons together with two different ${}^{2}J_{PC}$ values, probably due to the coordination by two different types of phosphorus atoms. The structure of 4 was unambiguously determined by X-ray crystallography and Fig. 2 depicts an ORTEP drawing.§ The P=C phosphorus atom coordinates in the end-on mode which leads to a large ¹J_{PW} value in the NMR spectrum. The P1-W distance [2.489(3) Å] is shorter than the P2-W distance [2.526(3) Å], and the P1–C(1) distance [1.651(10)] is normal for the P=C bond. The P1-W-P2 angle is small with a value of 65.1(1)°. The P1-C(1)-P2 and C(1)-P2-W angles, 93.5(3) and 101.8(5)°, respectively, are smaller than the corresponding angles for 3.

Chelate complex **4** was also derived by photo-irradiation of **3**. A THF solution of **3** was irradiated with a medium-pressure mercury lamp at 5 °C for 16 h in an NMR tube to afford **4** almost quantitatively. No E/Z isomerization of **3** was observed probably due to the steric hindrance between the Mes* and Ph₂P moieties.¹⁵

Compound **2** contains a chlorine atom at the sp^2 -carbon atom which can potentially be substituted. We are now attempting to prepare various types of 1,3-diphosphapropenes from **2**, as well as metal complexes of the type **3** and **4**.

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 12042208) from the Ministry of Education, Science, Sports and Culture, Japan.

Notes and references

† *NMR data* for **2**: ¹H NMR (200 MHz, CDCl₃) δ 7.4–7.5 (4H, arom.), 7.3–7.4 (8H, arom.) 1.41 (18H, *o*-Buⁱ), 1.31 (9H, *p*-Buⁱ); ¹³C{¹H} NMR (50 MHz, CDCl₃) δ 169.0 (dd, ¹*J*_{PC} 72, ¹*J*_{PC} 54 Hz, P=C), 153.2 (d, ²*J*_{PC} 2 Hz,

o-Mes*), 150.8 (*p*-Mes*), 136.2 (dd, ${}^{1}J_{PC}$ 62, ${}^{3}J_{PC}$ 27 Hz, *ipso*-Mes*), 135.8 (dd, ${}^{1}J_{PC}$ 16, ${}^{3}J_{PC}$ 11 Hz, *ipso*-Ph), 133.6 (d, ${}^{2}J_{PC}$ 20 Hz, *o*-Ph), 128.8 (*p*-Ph), 122.0 (*m*-Mes*), 37.8 (d, ${}^{3}J_{PC}$ 1 Hz, *o*-CMe₃), 35.1 (*p*-CMe₃), 32.9 (d, ${}^{4}J_{PC}$ 7 Hz, *o*-CMe₃), 31.4 (*p*-CMe₃); ${}^{31}P{}^{1}H{}$ NMR (81 MHz, CDCl₃) δ 302.4 (P=C), 13.4 (PPh₂), ${}^{2}J_{PP}$ 277 Hz.

‡ Spectroscopic data: for 3: yellow prisms (hexane), mp 196-198 °C (decomp.); ¹H NMR (200 MHz, CDCl₃) δ7.6–7.7 (4H, arom.), 7.4–7.5 (6H, arom.), 7.36 (2H, d, ⁴J_{PH} 2 Hz, m-Mes*), 1.35 (18H, o-But), 1.29 (9H, p-Bu^t); ${}^{13}C{}^{1}H$ NMR (50 MHz, CDCl₃) δ 199.3 (d, ${}^{2}J_{PC}$ 23 Hz, CO_{ax}), 197.0 (dd, ²J_{PC} 7, ²J_{PC} 7 Hz, CO_{ea}), 163.5 (dd, ¹J_{PC} 79, ¹J_{PC} 4 Hz, P=C), 153.3 (d, ²J_{PC} 3 Hz, *o*-Mes*), 151.3 (*p*-Mes*), 135.1 (dd, ¹J_{PC} 61, ³J_{PC} 18 Hz, *ipso*-Mes*), 134.5 (dd, ¹*J*_{PC} 44, ³*J*_{PC} 10 Hz, *ipso*-Ph), 132.7 (d, ²*J*_{PC} 12 Hz, *o*-Ph), 130.2 (d, ⁴*J*_{PC} 2 Hz, *p*-Ph), 128.6 (d, ³*J*_{PC} 10 Hz, *m*-Ph), 122.3 (*m*-Mes*), 37.5 (o-CMe₃), 35.0 (p-CMe₃), 32.6 (d, ⁴J_{PC} 7 Hz, o-CMe₃), 31.2 (p-CMe₃); ³¹P{¹H} NMR (81 MHz, CDCl₃) δ 328.0 (P=C), ¹J_{PW} 187 Hz, 34.2 (PPh₂), ²J_{PP} 187 Hz; IR (KBr) v 2071, 1988, 1936, 1919 cm⁻¹, FAB-MS m/z 804 $(M^+ - CO; 53\%), 692 (M^+ - 5CO; 79\%), 275 (Mes*P^+ - 1; 100\%).$ Anal. Calc. for $C_{36}H_{39}ClO_5P_2W$: C, 51.91; H, 4.72; Cl, 4.26. Found: C, 51.92; H, 4.78; Cl, 4.30%. For 4: red prisms (hexane), mp 220-222 °C (decomp.); 1H NMR (200 MHz, CDCl₃) δ 7.6–7.7 (4H, arom.), 7.4–7.5 (8H, arom.), 1.61 (18H, o-Bu^t), 1.34 (9H, p-Bu^t); ¹³C{¹H} NMR (50 MHz, CDCl₃) δ 208.4 (dd, ²J_{PC} 36, ²J_{PC} 6 Hz, CO_{eq}), 207.7 (dd, ²J_{PC} 25, ²J_{PC} 12 Hz, CO_{eq}), 203.2 (dd, ²*J*_{PC} 10, ²*J*_{PC} 7 Hz, CO_{ax}), 156.4 (dd, ¹*J*_{PC} 23, ¹*J*_{PC} 9 Hz, P=C), 155.6 (d, ²J_{PC} 2 Hz, o-Mes*), 153.6 (d, ⁴J_{PC} 2 Hz, p-Mes*), 132.5 (d, ²J_{PC} 14 Hz, o-Ph), 131.5 (dd, ¹J_{PC} 38, ³J_{PC} 16 Hz, *ipso*-Ph), 130.9 (d, ⁴J_{PC} 2 Hz, *p*-Ph), 130.8 (d, ³J_{PC} 11 Hz, *m*-Ph), 125.7 (dd, ¹J_{PC} 26, ³J_{PC} 26 Hz, *ipso*-Mes*), 122.5 (d, ${}^{3}J_{PC}$ 6 Hz, m-Mes*), 38.3 (d, ${}^{3}J_{PC}$ 1 Hz, o-CMe₃), 35.3 (d, ${}^{5}J_{PC}$ 1 Hz, *p*-*C*Me₃), 33.2 (d, ⁴*J*_{PC} 3 Hz, *o*-*CMe*₃), 31.0 (*p*-*CMe*₃); ³¹P{¹H} NMR (81 MHz, CDCl₃) δ 263.7 (P=C), ¹J_{PW} 213 Hz, 19.1 (PPh₂), ¹J_{PW} 202 Hz, ²J_{PP} 116 Hz; IR (KBr) v 2019, 1923, 1903, 1890 cm⁻¹, FAB MS m/z 804 (M⁺; 59%), 692 (M⁺ - 4CO; 96%), 275 (Mes*P⁺ - 1; 90%), 154 (PhPCCl⁺ - 1; 100%). Anal. Calc. for C₃₅H₃₉ClO₄P₂W: C, 52.23; H, 4.88; Cl, 4.40. Found: C, 52.50; H, 4.95; Cl, 4.52%

§ *Crystal data*: for **3**: C₃₆H₃₉ClO₅P₂W, *M* = 832.95, monoclinic, *P*₂₁/*c* (no. 14), *a* = 10.062(5), *b* = 25.244(3), *c* = 13.845(2) Å, *β* = 93.920(3)°, *V* = 3508(1) Å³, *Z* = 4, *D_c* = 1.577 g cm⁻³, μ = 3.504 mm⁻¹, *T* = 120(1) K, 2 θ_{max} = 50.1°, 5861 total reflections, 5487 observed reflections [*I* > 1σ(*I*)], *R*1 = 0.031, *R*_w = 0.073, *S* = 0.96 for 562 parameters, CCDC 159934.

For **4**: $C_{35}H_{39}CIO_4P_2W$, M = 804.94, orthorhombic, $P2_12_12_1$ (no. 19), a = 16.687(2), b = 21.984(3), c = 9.310(3) Å, V = 3415(1) Å³, Z = 4, $D_c = 1.565$ g cm⁻¹, $\mu = 3.594$ mm⁻¹, T = 125(1) K, $2\theta_{max} = 50.1^{\circ}$, 3318 total reflections, 3132 observed reflections [$I > 2\sigma(I)$], R1 = 0.049, $R_w = 0.110$, S = 1.27 for 389 parameters, CCDC 159933.

See http://www.rsc.org/suppdata/cc/b1/b102810n/ for crystallographic data in CIF or other electronic format.

- M. Regitz and O. J. Scherer, *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, Georg Thieme Verlag, Stuttgart, 1990; K. B. Dillon, F. Mathey and J. F. Nixon, *Phosphorus: The Carbon Copy*, John Wiley & Sons, Chichester, 1998.
- 2 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587; M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1982, 104, 6167.
- 3 R. Appel and W. Schuhn, J. Organomet. Chem., 1987, 329, 179.
- 4 D. Bourissou, Y. Canac, M.-I. Collado, A. Baceiredo and G. Bertrand, *Chem. Commun.*, 1997, 2399; D. Bourissou, Y. Canac, H. Gornitzka, C. J. Marsden, A. Baceiredo and G. Bertrand, *Eur. J. Inorg. Chem.*, 1999, 1479.
- 5 C. A. Akpan, P. B. Hitchcock, J. F. Nixon, M. Yoshifuji, T. Niitsu and N. Inamoto, J. Organomet. Chem., 1988, 338, C35.
- 6 W. Keim, R. Appel, S. Gruppe and F. Knoch, Angew. Chem., Int. Ed. Engl., 1987, 26, 1012.
- 7 K. Toyota, K. Masaki, T. Abe and M. Yoshifuji, Chem. Lett., 1995, 221.
- 8 B. Breit, J. Mol. Catal. A, 1999, 143, 143.
- 9 R. Shintani, M. M.-C. Lo and G. C. Fu, Org. Lett., 2000, 2, 3695.
- 10 S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F. Ozawa and M. Yoshifuji, Angew. Chem., Int. Ed., 2000, 39, 4512.
- 11 (a) M. Yoshifuji, S. Ito, K. Toyota and M. Yasunami, *Bull. Chem. Soc. Jpn.*, 1995, **68**, 1206; (b) M. van der Sluis, F. Bickelhaupt, N. Neldman, H. Kooijman, A. L. Spek, W. Eisfeld and M. Regitz, *Chem. Ber.*, 1995, **128**, 465.
- 12 T. C. Klebach, R. Lourens and F. Bickelhaupt, J. Organomet. Chem., 1981, 210, 211.
- 13 M. J. Aroney, I. E. Buys, M. S. Davies and T. W. Hambley, J. Chem. Soc., Dalton Trans., 1994, 2827.
- 14 M. Yoshifuji, Bull. Chem. Soc. Jpn., 1997, 70, 2881.
- 15 M. Yoshifuji, K. Toyota and N. Inamoto, *Tetrahedron Lett.*, 1985, 26, 1727.